爱因斯坦是如何预测到黑洞的存在的?
爱因斯坦是如何预测到黑洞的存在的?
-----
网友解答:
-----
黑洞并不是爱因斯坦预测出来的。
黑洞这一术语是1969年美国科学家约翰惠勒提出来的。
当时他为了形象地描述至少可以追溯200年前的观念时,杜撰的一个名词。
200年前,人们对于光的理解分成两派,一种是牛顿的光的微粒说;另一种是光的波动说。
如今我们都知道这两种假说都是正确的。量子力学的波粒二象性,光即是波,也可认为是粒子。
而光的波动说,不清楚光对引力如何响应;而光的粒子说,却完全可以解释。就像炮弹,火箭和行星一样受到力的影响。
最初人们认为,光粒子是以无限快的速度运动,所以引力无法让它变慢。
但是后来发现了光是以有限的速度行进的,这一发现,意味着引力对光速有着重要的作用。
1783年,剑桥大学的约翰米歇尔在这个假定的基础上指出,一个质量足够大并足够致密的恒星会有强大的引力场,甚至连光线都不能逃逸。
这意味着可能是由于从恒星表面发出的光,在还没到达远处前就被恒星的引力吸引回来。
可能存在大量的这样的恒星,虽然从它们那里发出的光不会到达我们这里,也不能看见它们;
但是我们仍然可以感到它们的引力。这就是我们现在称之为黑洞的物体。它是名副其实都在空间中的黑的空洞。
几年之后,法国科学家拉普拉斯侯爵也独自提出了和米歇尔类似的观点。拉普拉斯将他的这一观点写入了他的《世界系统》一书,拉普拉斯给黑洞起了一个美丽的名字,叫“闭合星”。但是在后来的版本中,又将此观点删除,因为他认为这是一个愚蠢的想法。
而光速是固定的,所以牛顿引力理论中将光类似炮弹的处理就不太协调。
因为从地面上发射上天的炮弹被引力减速,最后停止上升并折回地面;
然而,一个光子必须以不变的速度继续向上,那么,牛顿引力如何影响光呢?
直到1915年,爱因斯坦提出广义相对论,才得到引力如何影响光的协调理论。甚至又过了很长时间,人们才理解这个理论对大质量恒星的含意。
黑洞虽然不是爱因斯坦预测出来的,但是,爱因斯坦的方程中确实有黑洞的位置。
后来,德国科学家史瓦西利用爱因斯坦的方程计算时得出了一个解,如果大量物质聚集在空间一个点,那么就会形成强大的引力,其逃逸速度将超过光速,这就是黑洞。
所以说黑洞最终是人们根据爱因斯坦的理论推导出来的,但是爱因斯坦本人一直不相信黑洞的存在。
同样霍金也是一个黑洞研究方面的科学家,霍金重新定义了黑洞,他认为黑洞其实并不黑,应该叫灰洞。
直到2019年4月10日晚9时,全球多地天文学界同步公布了M87椭圆星系中心超大质量黑洞的“真容”,这是世界上第一张真实的黑洞照片,是通过一个相当于地球直径的射电望远镜联合阵列EHT拍摄到的,是世界上几百位天文学家共同努力的结果。
黑洞从被1783年被假定,到2019年被拍摄到真容,经历了200多年,每一个科学家都是巨人。
-----
网友解答:
-----
黑洞是爱因斯坦广义相对论预言的一种现象,爱因斯坦用广义相对论为黑洞进入科学领域铺平了道路,而这并不是他真正的意图
1915年,爱因斯坦发表了一系列广义相对论的演讲,声称空间和时间是一个连续体,可被任何有质量的东西扭曲,扭曲的结果就是引力,即引力是空间和时间扭曲的结果,并迫使一切物体,从光到行星,甚至从树上掉下来的苹果,沿着弯曲的路径穿过空间。
当爱因斯坦发展广义相对论的时候,花了大约十年的时间用一种叫张量微积分的数学形式近似地解出自己方程的解,即使是最优秀的科学头脑,也会对数学感到困惑。然而,这一挑战并没有阻止爱因斯坦同时代的一位天文学家——一位名叫卡尔·史瓦西的理论物理学家,史瓦西本质上是一个现实主义者,但他非常擅长处理理论概念,当爱因斯坦1915年发表关于广义相对论的文章时,史瓦西是第一个认识到它们重要性的人之一。
史瓦西是一位德国爱国者,所以当第一次世界大战爆发时,他把手上的天文学研究放在了一边,而选择了参军。当他读到爱因斯坦的论文时正在比利时、法国和俄罗斯前线参加战斗。尽管如此,史瓦西还是被广义相对论的本质所吸引,开始为它的方程寻找精确答案。在患了重病被送回家休养两个月后,史瓦西终于能够集中精力完成他的计算,在1916年去世前不久,史瓦西完成了他的工作,同年晚些时候出版了:《论爱因斯坦理论中的点质量引力场》成为现代相对论研究的支柱之一,史瓦西在其中提出了他对爱因斯坦未解方程的解。
当爱因斯坦写下他的广义相对论时发现了描述引力的新方法,即引力是空间和时间扭曲的结果,物质和能量存在于时空背景中,有三个空间维度和一个时间维度,物体的质量会扭曲时空结构——质量越大的物体对时空影响越大。就像放在蹦床上的保龄球会拉伸织物,使其产生凹陷,行星和恒星也会扭曲时空——这种现象被称为“短程线效应”。因此,围绕太阳运行的行星不会受到太阳的引力;只是沿着太阳质量引起的弯曲时空变形运转。行星从未落入太阳的原因是由于行星的运行速度,简洁地说就是“物质告诉时空如何弯曲,时空告诉物质如何移动。”
史瓦西意识到物体表面的逃逸速度取决于它的质量和半径。例如,地球的逃逸速度约为每秒11.2公里——这是火箭在离开地球之前必须达到的速度。但是,如果能使给定质量的半径足够小,逃逸速度就会增加,直到达到光速,即每秒30万公里,在那时,物质和辐射都无法从物体表面逃逸。此外,原子力或亚原子力无法使物体承受自身的重量。因此,物体坍缩成一个无限小的点——原来的物体从视野中消失,只留下它的重力来标记它的存在。结果,会在时空结构中创造了一个无底洞,称为奇点。史瓦西还解释说,一个奇点被一个球形引力边界所包围,这个边界会永远困住任何进去的东西,这个边界叫做视界( event horizon)。史瓦西还提出了一个公式,可以计算出视界的大小,这就是史瓦西半径,是时空无底洞的边缘,太阳的史瓦西半径为3公里,即它的视界就在离它表面三公里的地方,地球的史瓦西半径是9毫米。
史瓦西的论文中包含了激进的预测,时空无底洞的想法困扰了许多科学家包括爱因斯坦,爱因斯坦本人并不相信黑洞的存在,尽管他自己的理论预言了黑洞的存在,但他强烈反对这一观点。1939年,爱因斯坦在《数学年鉴》上发表了一篇文章,试图证明这样的时空无底洞是不可能存在的。因为它公然违背了人类经验——世界是有限的,一切都可以称重和测量。
1967年美国物理学家约翰·惠勒将史瓦西提出的”引力完全坍缩的物体“的原始说法进行改进,将之命名为黑洞。科学家们大约五十年来都没有意识到它在恒星演化中的重要性,直到最近才意识到它对宇宙发展的巨大影响。现代的科学共识是——黑洞确实存在,而且是宇宙最重要的特征之一,天文学家已经能够以不同方式间接地探测到它们,因此黑洞的存在是毫无疑问的。
-----
网友解答:
-----
首先要明确一下,黑洞不是爱因斯坦预测到的,1905年爱因斯坦发表狭义相对论后,从1907年开始了长达八年的对引力的相对性理论的探索。在历经多次弯路和错误之后,他于1915年11月在普鲁士科学院上作了发言,解释引力如何作用时,给出了著名的爱因斯坦引力场方程:
整个方程的意义是:空间物质的能量-动量分布决定空间的弯曲状况。
1916年,德国天文学家卡尔·史瓦西通过计算得到了爱因斯坦引力场方程的一个真空解,这个解表明,如果将大量物质集中于空间一点,其周围会产生奇异的现象,即在质点周围存在一个界面——“视界”一旦进入这个界面,即使光也无法逃脱。这种“不可思议的天体”被美国物理学家约翰·阿奇博尔德·惠勒命名为“黑洞”。
爱因斯坦对物体之间存在相互吸引的引力这种现象解释为因为物体的质量使得物体所在环境的空间、时间扭曲,而这种扭曲的结果并迫使一切物体,沿着弯曲的路径穿过空间,这种现象在最后外我们的观察中就感觉物质之间存在相关吸引的引力。比如:我们日常生活中看到的苹果从树上掉到了地上现象,爱因斯坦给出解释:因为地球的存在,使得地球周围的空间、时间发生了扭曲,苹果沿着扭曲空间行进而已;而牛顿给出的解:世界万物都存在相互吸引,苹果受到了地球的引力才从树上掉了下来。后来在天文观察中,发现爱因斯坦的理论计算结果更接近天体运动轨迹,如关于水星近日点进动值的计算结果。卡尔·史瓦西利用爱因斯坦的引力场方程,计算出了一个特殊的存在,即根据物体的质量可以使其周围的环境的空间、时间扭曲,而且扭曲程度跟其能动张量Tuv成正比的。通过计算卡尔·史瓦西得出如下结论:当一个天体的能动张量Tuv足够大,使其周围的环境的空间、时间严重扭曲,以至于当光线(宇宙中速度最快的物体)靠近这个天体一定距离是都无法逃逸,后来科学家把这种天体命名为黑洞。
换句话说,爱因斯坦只是给出解释引力现象的一种方法,而卡尔·史瓦西利用这种方法推算出来一种特殊的天体,然后这种天体被美国物理学家约翰·阿奇博尔德·惠勒命名为“黑洞”。
北京时间10日晚9时许,包括中国在内,全球多地天文学家同步公布了黑洞“真容”,这是人类首次拍到黑洞的照片,证明在极端条件下爱因斯坦广义相对论仍然成立。该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年,质量约为太阳的65亿倍。它的核心区域存在一个阴影,周围环绕一个新月状光环,如上图。
最后谢谢大家,这里是白说世界,用数学的思维,科学的方法跟大家一起对文化知识追本溯源。原创不易,如果大家对我的观点有不同的想法,请在评论区留言交流;你若关注、我必回应,互关互动!
-----
网友解答:
-----
预测黑洞存在的物理学家是史瓦西(Schwarzschild),不是爱因斯坦!
但黑洞又的确和爱因斯坦关系密切,涉及到爱因斯坦的广义和狭义相对论。
最先发现可能存在黑洞这种怪兽天体的物理学家是德国犹太裔物理学家史瓦西,他在一战服役期间,从爱因斯坦的广义相对论方程中,推导出了一种可能的天体怪兽——就是后来被通俗化的黑洞——,当时还被称为史瓦西解。很不幸,史瓦西在第二年因天胞疮而去世,这是一种自身免疫性疾病,尤其高发于德国犹太人群体中。
图示:史瓦西与黑洞解,黑洞的不可逃逸范围,称为史瓦西半径。
史瓦西解之所以后来被称为黑洞,原因也很简单,因为要从这个天体上出逃,需要的逃逸速度超越了光速!这意味着即便连光都无法从该天体中逃逸,这意味它既不可能发光,也不可能反光。同时,爱因斯坦的狭义相对论还规定任何粒子的运动都不可能超越光速,这意味着进入史瓦西天体的任何物质都将一去不复返。因此就有了黑洞这样的通俗称呼,这个称呼后来被科学界接受。但法国物理学家有段时间很抗拒黑洞(black hole)这个词,认为不够典雅,他们建议将黑洞称为隐星!隐藏在宇宙的星星,不过这个建议既没有被大众媒体采纳,也没有被别国物理学家采纳,大家都默认了黑洞一词,以至于许多人忘记了,其实黑洞还是一个天体,只不过非常特殊。
图示:广义相对论的核心思想就是质量可以扭曲时空。
如太阳就扭曲了它身边的空间,而广义相对论之所以被物理学界广泛接受,正是因为天文学家爱丁顿证实太阳真的扭曲了它周围的时空。随着天体密度的增加,如白矮星和中子星,它们对时空的扭曲也越来越严重,而黑洞则是其中的极致,黑洞表面出发的时空,最终会返回其自身。
图示:地球也扭曲它周围的时空,要挣脱这种扭曲,需要速度,逃离地球的速度被称为第一宇宙速度,而逃离黑洞的速度,超过了光速,也就是说,在现有物理学框架下,一旦进入黑洞,就是一条不归路。
实际上,爱因斯坦坚持认为黑洞这种怪物不可能存在!
在史瓦西得到“黑洞解”后,爱因斯坦认为这个解,不可能真实存在,它将会违背物理现实,直到1939年,爱因斯坦发表的论文中还专门指出恒星不可能坍缩成一个黑洞。
图示:当时还没有黑洞一词,爱因斯坦还在使用,史瓦西解这样的表达。
图示:史瓦西认为,足够大的恒星,最终将塌缩成一个奇点,而爱因斯坦则认为这种事不可能发生在现实宇宙中。因为他认为,这要求恒星塌缩的速度超光速。
现在的物理学家 ,已经解决了恒星不需要超光速塌缩就能成为黑洞的办法,这是爱因斯坦当年没想到的。
首张黑洞照片,证明广义相对论还是正确的
不管爱因斯坦本人是否相信黑洞的存在,但黑洞的许多属性都可以用他的广义相对论方程来进行计算,在人类拍摄到首张黑洞照片之前,我们见到的要么是艺术家依据科学理论想象中的黑洞,要么就是理论物理学家用电脑模拟的黑洞,电脑模拟自然只能用广义相对论作为基础。虽然,我们已经在太阳系中对广义相对论进行了精密验证,但它是否真的能用于黑洞这样的极短天体吗?
事实是,首张黑洞照片,完全符合爱因斯坦的广义相对论,看来大神还得继续供着。
欢迎关注三思逍遥,谢谢点赞
-----
网友解答:
-----
黑洞并不是爱因斯坦预言的,只不过爱因斯坦的方程中有黑洞的位置,德国科学家史瓦西利用爱因斯坦的方程计算时得出了一个解,如果大量物质聚集在空间一个点,那么就会形成强大的引力,其逃逸速度将超过光速,这就是黑洞。
这就是所谓的连光都无法逃脱黑洞控制说法由来,爱因斯坦也对黑洞这玩意的存在很苦恼。黑洞与引力波不同,后者爱因斯坦做了预言,毕竟爱因斯坦的方程是侧重对时空的解读,但黑洞则不是。
黑洞是爱因斯坦方程中的一个特殊的存在,由于连光都无法逃脱,那么美国科学家惠勒将其称为黑洞。
霍金给黑洞进行了新的定义,认为黑洞不是黑的,而是灰的,可以称之为灰洞。由此也可以看出,霍金是一个黑洞研究方面的科学家,并非爱因斯坦那样颠覆掉一个体系。
------------------
推荐阅读:
大家有没有和我一样的经历,朋友圈越是自己的亲人和好友越是不给我点赞及评论?
下一篇: “说曹操,曹操就到”是怎么来的?