“热”能发电,“冷”为什么不能发电?有没有科学家研究?
▍⇘“热”能发电,“冷”为什么不能发电?有没有科学家研究?
这个问题提的非常好,从第一次工业革命,人类掌握了热能的利用,以后,就没有人在关注冷的利用,其实啊!冷也是一种能量,可以起个名字叫冷能量,从牛顿定理,到热力学的各种定律,已经运用了两三百年的时间,直到目前基本上到了顶峰,但是,冷能量,很少有可以想象关注,因为它与热能量相比,理论性,和利用,复杂很多,人类还没有发现它的规律,和起源,地球南极北极的冷能源,和宇宙中的冷能源,是不是在宇宙力学和地球力学理论之中?没有哪个科学家来分析这个问题,目前很多人提到的温差发电,也就是半导体温差,发电,其实她还是一个,热能量发电,热和冷的温差越大,这块半导体的电流就越大,应该给冷,没有太大的直接的,理论关系,因为没有热,它就不会产生电流,目前与冷能量有关系的,这是其一,随着人类的科技发展的,探索和发型,冷能量,或者是说冷能源,会得到充分的利用,到那时,可能又是一次技术和工艺的革命
▍╂“热”能发电,“冷”为什么不能发电?有没有科学家研究?
热胀冷缩是一切物质的原理。
冷能使物体缩小,内部电子运动减慢,而热正好相反。
目前世界上所有的发电厂都是以物体的热运动,膨胀产生动力发电的。
比如火力发电,把水烧热后产生蒸汽推动汽轮机带动发电机发电的。核电也是如。
一切物质都会遇热膨胀。
热胀的道理是什么呢?
热胀后的物质内部会产生极速运动。电子的自转速度加快,轨道圆周面积加大,由于旋转产生的离心力,而许多物质单元互相远离,占据了空间许多的面积,这就是膨胀。
在一个面积有限的空间,迅速占据很大的面积,而挤压空间就会使四周产生压力,而推动活塞运动。
一个物体在常温下不导电,加热到一定的温度后它就能够导电。
我们常用的燃气热水器安全系统,就是利用火焰导电这个原理,热运动会产生自由电子,自由电子是物体能够导电的基础。
冷能不能发电呢?
冷能够产生动力,冷就能发电。
目前还是用热量产生动力发电的。
一块冰,达到更低的温度就会裂开,而变成雪花。这就是冷的力量,如果人类能够利用冷产生动力,那么冷就能作为动力发电了。
▍┣“热”能发电,“冷”为什么不能发电?有没有科学家研究?
很多人对科学还是沉浸在自我幻想之中。发电的原理无非是基于热力学第一和第二定律,电能由其他能量转换而来。针对本问题,电能是由热能转换而来。那么热能是什么?冷的物体有没有热能?
1、热力学基本定律
发电遵循着热力学第一定律和第二定律。电能是由其他能量转化而来,不会无缘无故的多出来电能。并且,这种能量的自发转化存在着方向性,否则就必须依靠外部干涉,由此能量的转化存在着效率的问题。大多数情况下,能量的转化效率都非常低,50%已经算是非常高的一个效率了。
2、热电厂的发电原理
我们先来看下热电厂的发电原理。煤之类的可燃烧物进入燃烧的锅炉后,释放出热量,用来加热管道内的工质(俗话就是水),管道内的工质被加热后获得能量,从而将燃烧物里的能量携带出来,液态水变成气态,推动叶轮机旋转,这样热能就变成了叶轮机旋转的机械能。叶轮机的旋转再通过电磁感应技术,转化成电能。
从这个过程可知,燃料的燃烧能,需要经过工质的中间过程,再经过机械能的转化,最后才能变成电能。这之间,热量的耗散,机械结构的摩擦,等等,都存在着能量的损失。所以,热电厂的发电效率非常低,大概是30%-40%。
3、热机的工作原理
热机的工作原理,虽然两者都是燃烧,其实与热电厂不一样。热机并未用到工质,所以少了一个能量的传递环节,相对来讲效率会高一些。如下图,燃料燃烧爆炸后,推动活塞,从而将热能直接转化为机械能。
这种热机,通常就是对外做功的,比如汽车的发动机。还有一部分能量会存储起来,以电能的形式,存储在蓄电池内。这部分的原理依然是电磁感应,机械能转化为电能。
4、理论分析——冷热环境才能热能的输出
虽然,上面两个例子,都介绍了燃料的燃烧,从而获取热能。但是,燃烧仅仅是第一步。光燃烧,是无法获得电能的,必须依靠机械能的转化。聪明的同学一定也发现了上面两个例子的共同点:1)是个系统,分多个阶段,缺一不可。2)都处于一个工作环境之中。3)整个过程是一个循环。
针对本问题,第二点就显得非常重要。整个系统都处于一个工质环境之中,这个工作环境温度肯定是低于燃烧后的温度的。这就表明,热量的获取并转化为电能,必须有高温和低温两个环境。这其实也是热力学第二定律所决定的,单纯的从一个热源获得能量的热机并不存在。
5、总结
我想我已经回答了题主的问题。热发电、冷发电,其实是俗语。热机发电依靠的是冷热两个热源,热机从高温热源获取热量,并转化为机械能,剩余能量排放到低温热源环境中。光靠热或冷,是无法发电的。
▍▍“热”能发电,“冷”为什么不能发电?有没有科学家研究?
要回答这个问题,得首先明白发电的基本原理。
发电就是利用相应的发电设备,也就是发电机,将其它形式的能源转换为电能的过程。这个其它形式的能源,主要包括太阳能、风能、水能、热能、核能等,先利用机械驱动转化为机械能,然后传递给发电设备,由发点设备再转化为电能,实现发电的功能。
世界上的任何能源利用形式,都是通过能量差来实现的,发电也是一样,其它能源转化为电能,那么其它能源就要被消耗,因此利用的就是被消耗的那部分,比如风能差、水流势能差、温度差、原子核能差等,没有能量差的变化,是没有办法转换能量的。
利用温度差来发电是目前应用较多的能源转换方式,比如燃煤发电,先将化学能转换为热能,利用输出的热能,把水转化为水蒸气,推动发电机的机械装置进行机械运动,进而推动发电机的磁力线发电,其中热能推动水变为水蒸气,所需的能量来源于燃煤前后的温度变化。
“热”和“冷”是人们衡量物体温度直观感受的表述名词,而在热力学中只有“热”的概念,而没有“冷”的概念。只要是处在绝对温度以上的物质,本身都具有热能,温度越高,组成物质的微观粒子运动越剧烈。同样,微观粒子运动越剧烈,对外表现出温度就越高,理论上可以创造温差的潜力就越大,对外可以输出的热能就越多,发电效率越高。
因此,应用“冷”来发电,原理也是一样,必须要有温度差,但与“热”发电对比,必须要有额外的能量输入,使“冷”变“热”,发电的条件要更加苛刻,效率较低。
(图片来源网络,侵删)
▍➼“热”能发电,“冷”为什么不能发电?有没有科学家研究?
“冷”发电的流程如下:将容器中的冷凝剂冷却液化,冷凝剂体积缩小带动活塞运动做功;再将冷凝剂放入室温吸热汽化膨胀,带动活塞反向运动做功。一直重复这个过程就可以让活塞持续运动做功,做的功可以发电也可以做别的。
实际上,热和冷都不能发电,发电靠的是温差。冷和热的温差相反,只是在做功的过程中某些动作正好相反而已。其实推广开来,能量是守恒的,不能被创造,能不能发电,主要是看能量是否可用。
通常只要有物理量差,物质所携带的能量就是可用的,比如温度差、压力差、电势差、高度差。最简单的是高度差,青藏高原的水不能在青藏高原发电,但是流到低海拔后,有了高度差就可以发电。
能量与可利用的能量之间的差别在生活中也会经常遇到:比如电能可以100%的转化为功或者热能,但是热能不能100%的转化成功或者电能。
再举一例,一吨300℃的过热水蒸气和两吨150℃的过热水蒸气,相对于0℃而言,它们的热量是相等的。但是都在0℃的环境下,300℃的水蒸气可以发的电更多。这可以概括为:温度越高,热量的“质量”越高,也就是其中可利用能量所占的比例越大。
------------------
推荐阅读:
下一篇: 金陵十二钗正册都有谁?