为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
▍✯为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
细思极恐!宇宙天体居然不是球形,什么八角形、土豆行都是常态,甚至最近神秘逼近太阳系又神秘消失的奥陌陌,也是一根棒槌形啊!
题主以河里鹅卵石比喻天上天体,我个人认为,这个比喻才是细思极恐呢。
悍然入侵的——奥陌陌
同学们不应该这么快就遗忘掉,2017年10月,一个神秘的天体从我们太阳系的上方悍然闯入,一路极其嚣张横行,然后在水星轨道附近被太阳系的神秘力量弹飞反转后,调转方向匆匆地奔向木星轨道,而且它并没有按照一般小行星的套路出牌,而是突然获得意外的加速度,摆脱了人类的视线观测后,如同它神秘的闯入一样,又神秘的消失于天际。
对,这就是在2018年引起轩然大波的——奥陌陌——夏威夷土语中的侦察兵!
奥陌陌密度很高,表面呈锈红色,还覆盖着富含碳的有机物,它是第一颗进入太阳系被人类观测到的系外星际物体。人们以为它是一颗小行星,但是它的长宽比超过10:1,大大超出人类认知的3:1范畴。我们先不讨论它为何会反重力加速度般的加速离开了太阳系,光是这个外形,就已经打破了题主——天体都是球形的想象了吧!
哪里来一个10:1长宽比的球呢?
星际物体个子小,长得就随意
常规的气态(液态如果能存在的话也一样)星球,很非常容易由于离心力和引力的作用,成为一个圆滚滚的球体,参考太阳。在这一点上来说,题主的观察是精准的,如果你离太阳足够远的话,的确这个观点偏差不大,但千万不要跑到太阳近距离观察就行,你会发现太阳更像一个炸毛的绒球。
而有固态结构的岩质行星,情况则更加突出,只有半径大约大于500千米级别的(也有数据称要到达1000千米),才有可能因为自身引力的关系,慢慢变成一个差不多的球体。
如果自身尺寸过小,达不到临界半径级别的话,则引力无法改变星际物体的原始外貌,也就是说,最原始的一面将得以保留下来。
如果众多小行星有心理活动的话,大概就是,反正咱们个子小,别人看不到,长随意点也无所谓了吧。
球形也是不靠谱的球形
同学们都会觉得,足够大了,就肯定圆了吧?你看地球本身不就是一个完美的球形吗?
想的太天真!地球根本就不圆。
同学们绕赤道走一圈,是40070公里。而选择从南极点出发到北极点走一圈,却是39931公里。两者相差0.3%。
岩质行星难免磕磕碰碰,样子有点变形了,我们也可以理解,那么气体行星,总得为球形正名一把了吧?
答案也是不靠谱,上帝可能真的讨厌绝对这两个字。
举个例子,还是以太阳系为例,我们星系中最大行星——木星,赤道腰围要比两极子午线一圈多出7%。第二大行星土星更明显,多出10.7%。用来打保龄球都不会及格的。
结语
鹅卵石是收到流水或风沙的摩擦碰撞,被磨去了棱角,离球形的要求相去甚远。
宇宙的天体,如果以绝对数量为基准,则是长得充满个性的兄弟居多,而类似球形的大天体,反而不占多数。
当然,肉眼所见的都是会发光的恒星,所以,题主的提问,在这个角度下,也是符合实际的。
我是猫先生,欢迎关注,感谢阅读。
▍⇇为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
在自然界和宇宙中有三大最稳定结构:球体、三角形、三棱体,还有六大次稳定结构:椭球体(鹅卵形)、圆柱体、椭圆柱体、三棱柱、六边形、六棱柱。
自然界和宇宙中之所以会存在这些最稳定结构或次稳定结构,主要是源自如下三大自然法则:
1.能耗最低法则。根据宇宙大爆炸理论,自然界和宇宙中的所有物质、元素、天体等都是“奇点”中的能量转化而来。而形成上述形体所消耗的能量都比形成相应的多边体、多棱柱的能耗要小,最终形成的上述形体的体积也都比相应的多边体、多棱柱的体积要小。
2.结构最稳定法则。上述形体的结构都比相应的多边体、多棱柱结构稳定,不易被自然力量或能量所破坏。
3.力学受力最均匀法则。上述最稳定结构中的任何一种都能承受来自空间360°的作用力,都能产生基本一致的反作用力。上述次稳定结构中的任何一种也都能承受来自空间360°的作用力,虽然产生的反作用力不一致,但其差异与其它相应形体相比也是最小的。
河里的鹅卵石虽然也遵从上述三大自然法则,但其形成过程与天体不一样。天体是直接由能量转化而来,首先决定天体球体的因素是“能耗最低法则”;而河里的鹅卵石是河水冲刷、滚动摩擦和滚动撞击而形成,所以首先决定鹅卵石椭球体形状的自然法则是“结构最稳定法则”和“力学受力最均匀法则”。
▍⇝为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
尽管鹅卵石都没可能像天体那样比较标准的球形,但至少也是圆润有余,不过我们要了解一下的是鹅卵石本身依附于行星,而且必须是在含有液态水行星的河流或者浪花冲刷下才能形成,与行星的球形似乎没有任何关系,不过既然有了个无聊的问题,那么不妨就来做个简单的了解!
一、鹅卵石是怎么形成的?
河滩上的鹅卵石,其实要找到一颗滚圆的鹅卵石还是非常困难的,因为河流冲刷只是磨掉了石头的棱角而已,并不能将石头往球形方向塑形,除非这颗石头初期的形状非常正,那么未来接近球形的概率会高一些!
我们在河滩上看到鹅卵石就是由水流的搬运翻滚碰撞摩擦中逐渐将石头的棱角磨去的,当然除了河流还有海滩上的海浪,尽管过程会稍有区别,但结果并无多少差别!当然还有一个过程也能形成鹅卵石!
这是形成鹅卵石的另一个途径,被水浸泡的矿物硬化后表层受到风化作用脱落露出内部的硬核,这是最近发现的火星鹅卵石成因!
二、天体是怎么形成的?
水在没有引力平衡的状态下会呈现完美的球形,当然上图的球体还有一些动态变形,那时候因为气流影响和不平衡力影响所致!天体在引力平衡的宇宙中成型时候,其刚性会被强大的引力坍缩能所克服,逐渐趋向于一个流体球形,这并不需要碰撞成型,反而碰撞会破坏这个形状!
熟悉科幻片的朋友肯定知道这是什么电影里的场景,这里就卖个关子,了解的朋友可以留言。尽管天体已经破碎但依然会在轨道上围绕质量比较大的那个碎块公转,只要没有超过逃逸速度,那些碎块最终还是会逐渐聚拢并重新形成一个新的天体!
这和恒星过程其实类似,至少在恒星的原始积累时是一致的!因此我们并不需要担心太阳系内的天体会玩碰碰车,这是不可能发生的事情,但流星或者彗星类的撞击也许会发生,比如1994年的苏梅克列韦九彗星撞击木星,但却不是为为木星塑形来的,只是给木星增加质量了!
最后来看看太阳系的形成动图,当然有些夸张,不过大致也就是这样!
▍✏为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
首先我们来分析一下这个问题,细思极恐的地方在哪里?题主的意思指得是你看太阳系内的八大行星包括太阳在内都是接近于正圆的,其他恒星系的情况也是如此。而我们日常生活中在河边看到的鹅卵石,也很多都是有圆弧的。那么细思一下我们的宇宙会是一条河,而天体就是鹅卵石。这下你感觉到恐怖了吧?
说实话个人感觉这一点都不恐怖,甚至感觉有点好笑。完全没有关系的两个东西也能强拉硬拽到一起进行比较。再说了宇宙中的天体如果不论大小只看数量,那么非圆类的天体还是占据大多数的。就拿太阳系内的天体来说,小行星的数量有数十万颗,几乎没有是正圆的,大多数都是形态各异。比较典型的如2017年闯入太阳系的星际天体-奥陌陌,完全的雪茄形状跟圆都不沾边。
当然天体质量越大一般都比较接近于正圆,这可以看出来天体的形状和引力有着很重要的联系。在天体形成后引力的无差别踏缩作用,会让天体趋于圆形,而质量越小的天体引力的作用效果越不明显。同时天体的质量较大和其他天体之间的引力作用,例如月球绕着地球转在潮汐力作用下,月球只有一面正对着地球,这被称为潮汐锁定,这个过程也对天体性状的塑造起作用。
而鹅卵石的形成原理就更简单了,在水流的冲击下表面区域完整,而小鹅卵石会被水流推着滚动着“跑”,时间长了自然而然形成光滑圆润的表面。但是天体的圆形冲击作用就什么关联了,因此也联系不到一起去。
▍⇚为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
为什么宇宙中的天体都是球形?有没有河里鹅卵石的效应?
在我们观看有关宇宙的记录片或者宇宙天体的图片时,估计都会发现一个有趣的现象,那就是这些天体似乎被一种无名的力量,驱使它们都拥有着完美的球形,然后就像小时候玩的玻璃球那样,边自转边围绕着上一层级的引力中心旋转,整个宇宙表现出秩序井然的状态。那么,为什么这些天体看上去都是球形的呢?
比如,我们所在的地球,以及太阳系内的各大行星,从外观上看似乎都是呈现球形的状态,更不用说银河系内其它更大质量的恒星或者黑洞了,有人因此将这种情况与河中的鹅卵石相比较,认为宇宙空间和流水环境可以进行类比,都在被一种看不见的力量的侵蚀着,通过漫长的时间,棱棱角角都被“磨平”了,如果按照这样的设想,我们的宇宙空间还真的让人有种细思极恐的感觉。不过,这种类比是站不住脚的,宇宙空间虽然并非真空,但是星际气体的密度异常微小,每立方厘米的质子数量,平均只能达到零点几个的水平,这无论是与流水中的水分子密度,还是与大气层中大气分子的密度相比,差距都有很多个数量级,依靠太空环境中的摩擦,而使天体变为球形根本不可能,如果有这么大的摩擦力,星体的公转和自转早已经在这种明显的阻碍作用下发生停滞了,哪里还能有现在星系的稳定运行呢?
我们现在看到外观呈现球形的天体,都是质量和体积较大的星体。大家不要忘了,除了我们直接可以观测到的恒星、行星、卫星等这些质量较大的星体之外,宇宙空间中还存在着数量更多的小行星,比如仅在太阳系内,在木星和火星之间就存在着数百万颗小行星,在海王星轨道之外的柯伊件带内,除了一些质量较大的矮行星以外,仍然有着数不胜数的小行星,这些小行星绝大部分的外观,并非是标准的球形,甚至连规则形状都谈不上,长得都比较“随意”,棱角都非常鲜明。就像前几年闯入太阳系的小行星奥陌陌,其形状更加离谱,呈现的是一个长条形,长宽比例达到了惊人的10:1,因此有人调侃这是不是一个“伪装”成小行星的外星飞船。
对于大质量星体来说,其外形的塑造与引力密不可分。引力作为宇宙中4种基本作用力之一,虽然是一种长程力,但是力的作用效果是4种力中最弱的,因此对于质量较小的物体来说,引力的相互作用并不会对物体的外形产生明显影响,但是对于宏观的宇宙大尺度来说,引力的作用就非常明显了,无论是恒星的诞生、行星的聚合、星体的运行、黑洞的形成等等,引力在其中都发挥着重要作用。
对于质量极大的黑洞来说,其强大的引力作用,使得在其史瓦西半径以内,连光线都无法逃脱出去,由于引力具有各向同性,因此黑洞就形成了非常接近球形的事件视界,我们无法通过任何观测手段来观测事件视界以内的任何信息,只能通过引力透镜、吸积盘、粒子流喷射等方法间接观测到。
对于恒星以及行星、卫星来说,它们的形成都得益于不断地吸收周围星际物质,这些星际物质在聚集过程中,受到引力的作用持续进行着向内坍缩,由于在吸聚物质的过程中,物质来源基本上也是从宇宙空间的各个方向均匀进行的,因此坍缩现象也基本是均匀地发生在星体表面,从而在结果上也表现出星体形状的规则性,即最终呈现的是球形的状态。只不过,恒星、行星和卫星在它们所吸聚物质的数量上有着巨大的差别,恒星产生的时间较早,所吸聚的星际物质更多,在物质坍缩过程中内核温度更高、压力更大,在量子隧穿效应的作用下,激发了核聚变反应,行星和卫星的聚合物质来源,是恒星形成之后剩余的“边角料”,内核的温度不足以支撑核聚变的条件,只能依据聚合物质的不同形成属性不同的固态行星、气态行星以及围绕它们运行的卫星。
据科学家们测算,当星体的半径达到500公里以上级别时,其外层物质因引力作用引发的坍缩效应,就会突破星体表面的结构应力,使星体表面朝着向内核收缩的趋势,从而密度进一步增大、表面进一步平滑,最终达到星体流体静力学平衡的状态。而一些拥有大气层的行星,因星体自转产生的大气流动,也会对星体表面的物体产生侵蚀作用,在与星体内部地质作用的共同作用下,持续发生着侵蚀、搬运、堆积等作用,一起塑造着星体的表面状态。
而星体的尺寸大小,如果没有突破500公里这个界限,那么星体表面所受到星体核心的引力作用,将很难引发自身结构的改变,于是就有很大的几率保持着其原来的“外貌”,无论是星际物质聚合的“半成品”,还是星体之间碰撞之后的碎片,这些小型天体在形成以后,将会在很长时间保持这个形态,除非再受到巨大的外力作用。
实际上,无论是恒星也好,还是行星也罢,这些大质量天体虽然外形上表现出球体的形态,但都不是标准的球体,因为这些天体本身在吸聚物质角动量继承的基础上,都以不同的速度发生着自转,沿着自转赤道处其线速度值要比其它区域大,因此为了维持运行稳定性,在赤道处就会发生物质的“轻微聚集”现象,使得星体成为近似球体的椭球体,自转速度越快这种差距就越大,而且气态行星比固态行星要明显,比如地球的赤道半径就比两极半径长21公里,土星赤道半径比两极半径长5000多公里。另外,天体与天体之间由引力引发的“潮汐”现象,也会不同程度地影响着星体的外观和自转速度。
------------------
推荐阅读:
对于一个很讨厌的人天天在面前晃,友友们都是怎样做到心平气和的?
上一篇:在银河系中,离恒星最近的行星有多近?为什么可以这么近?
下一篇: 金陵十二钗正册都有谁?