如何实现可靠的数据可视化?
↛★如何实现可靠的数据可视化?
想要实现可靠的数据可视化需要从两方面做准备,首先,数据分析人员需要掌握可靠的数据,能够与分析的事物相贴合,其次,数据分析人员需要使用可靠的可视化工具及可视化方法。
1.确认需求
数据可视化过程中必须紧贴企业业务流程,了解业务指标,最大程度地提升数据分析的准确性,提高图表展现信息的质量。我们必须要先清楚图表制作完成后受众对象是谁,对项目做一个初步的规划方案,把需求对象要解决的问题、想要看到的信息以及关键点摸清。
2.准备数据
数据决定了你图表可以展现的信息,也决定了你要进行的分析流程,所以一定要提前到数据仓库中查看是否有自己需要的业务数据。如果没有就要及时寻找,看看对方是否能够临时填报、补录数据,增加数据的源头。
3.选择图表
数据可视化分析人员必须了解所有主流的图表类型,知道每个图表适合做哪些分析,能够展现哪种类型的信息,举个例子,折线图、柱形图等能够轻易的展现事物的发展趋势,但如果你把某段时间销售数量变化趋势呈现在饼图上,那这个图表就没有任何意义了。
数据可视化 - 派可数据BI可视化分析平台
4.可视化工具
. 一般来说,可视化工具根据不同方式可以分为代码可视化工具以及低代码、无代码可视化工具。可视化工具的优点就是更加的轻量化,一般需要编写代码,只能由掌握IT技术的员工使用。
数据可视化 - 派可数据BI可视化分析平台
BI可视化工具功能则完善得多,也是最受企业欢迎的可视化分析系统,它可以直接连接企业的业务数据库,把这些业务数据经过ETL处理之后存放到统一的数据仓库中。需要使用的时候就可以直接从数据仓库中加载数据,节省了大量寻找数据的时间,实现了一定程度的自动化,并且操作人员只需要简单的拖拉拽就可以制作各种复杂的图表。
5.数据可视化分析
整个可视化图表页面中,色彩不宜太过丰富,颜色最好也不要太过鲜艳,把色彩对比强烈的颜色放到关键信息,用清晰的逻辑去呈现变化,突出重点部分,使用户产生更好的体验,这才是他们最希望看到的。
数据可视化 - 派可数据BI可视化分析平台
最后,回到数据分析本身,作为数字化转型的必备手段,分析人员可以选择为制作完成的可视化图表附上自己从业务逻辑思考的信息,帮助用户更好的分辨图表展现的意义。
⇖✵如何实现可靠的数据可视化?
有一段时间疯狂的迷恋数据可视化。各种主流的图形库基本都用过,后来发现大同小异,封装好的东西灵活性比较差,基本上他想让你做啥,你才能做啥,也就是线图饼图柱状图这些乱七八糟的,把数据传一传,颜色定一定,字体之类的改一改。但自由度差很多。搞到最后想要升级的话必须得学习像d3这样的库。
要实现可靠的数据可视化非常容易,你传数据,直接就生成图形了,除非你数字传错了,不然怎么可能不可靠呢。
这基本就是一个稍微懂点编程的人,学一个小时就能达到的。但这根本就不是掌握了数据可视化。之前看到有一些小朋友,连编程都不会,直接在echart网站里面改一些参数,然后把左侧的生成图形截个图,这能叫数据可视化吗?还不如好好学一学indesign ps ai 这些做图软件呢。好看的数据格式化还是要依赖这些作图软件,那做出来的效果绝对是不一样的。之前看到过一些可视化的优秀作品,基本都是靠这些做图软件做出来的,那立体感,那效果,绝对一个字棒。
❏✆如何实现可靠的数据可视化?
what:什么是数据可视化?
塔夫特所说:
图形表现数据。实际上比传统的统计分析法更加精确和有启发性。
对于广大的编辑、设计师、运营分析师、大数据研究者等等都需要从不同维度、不同层面、不同粒度的数据处理统计中,借助图表和信息图的方式为用户(只获得信息)、阅读者(消费信息)及管理者(利用信息进行管理和决策)呈现不同于表格式的分析结果。数据可视化技术综合运用计算机图形学、图像、人机交互等,将采集、清洗、转换、处理过的符合标准和规范的数据映射为可识别的图形、图像、动画甚至视频,并允许用户与数据可视化进行交互和分析。而任何形式的数据可视化都会由丰富的内容、引人注意的视觉效果、精细的制作三个要素组成,概括起来就是新颖而有趣、充实而高效、美感且悦目三个特征。
why:为什么要进行数据可视化?
无论是哪种职业和应用场景,数据可视化都有一个共同的目的,那就是准确而高效、精简而全面地传递信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,获得更有商业价值的洞见和价值。并且利用合适的图表直截了当且清晰而直观地表达出来,实现数据自我解释、让数据说话的目的。而人类右脑记忆图像的速度比左脑记忆抽象的文字快100万倍。因此,数据可视化能够加深和强化受众对于数据的理解和记忆。
how:如何实现可靠的数据可视化
数据可视化包括数据的采集、分析、治理、管理、挖掘在内的一系列复杂数据处理,然后由设计师设计一种表现形式,或许是二维图表、三维立体视图,不管是什么样的信息图,最后由前端工程师创建对应的可视化算法及前端渲染和展现的实现。如果仅仅是能够将数据转化成漂亮的图表,设计出固定维度、不同式样的图表来解释你的观点,并不说明这样的结局就足够好。这只是一个简单的开始,只是一个美好愿望的萌芽。如果要成功报告结果,将你所分析的度量和数据有效地转化为有商业价值的见解,使其能够为基于事实所做的决策提供支持,那么还需要做更多的功课。
色彩提升信息可视化的视觉效果。在信息可视化通过造型元素明确传达信息及叙述的基础上,把握好视觉元素中色彩的运用,使图形变得更加生动、有趣,信息表达得更加准确和直观。色彩可以帮助人们对信息进行深入分类,强调和淡化、生动而有趣的可视化作品的表现形式,常常给受众带来视觉效果上的享受。当然,视觉效果要将企业品牌的色调融合进去,和企业的品牌文化保持高度的一致,这是一个最基本的常识。比如,如果企业的品牌色调比较热衷红色,你设计的可视化效果,就要有意识地朝着这个基调靠拢。但没有必要吻合,因为红色的可视化效果,通常都包含警示的韵味,所以,红色适合做预警、提醒和突出信息的功能。
排版布局增强信息可视化的叙事性。我有酒,你有故事吗?排版布局四大基本原则:
对比(Contrast): 如果两个项不完全相同,就应当使之不同,而且应当是截然不同。重复(Repetition):设计的某些方面在整个作品中重复。对齐(Alignment):任何元素都不能在页面上随意安放。每一项都应当与页面上的某个内容存在某种视觉联系。亲密性(Proximity):将相关的项组织在一起,使它们的物理位置相互靠近相关的项将被看作凝聚为一体的一个组。动态增加信息可视化的视觉体验。在信息可视化的视觉表达中,动态地将相互分离的各种信息传播形式有机地融合在一起,进行有关联、有节奏的信息处理、传输和实现。最终的目的是,为了实现数据之间的联动,解释数据表现之间驱动和联系的关系。通过图表样式和色彩的运动,满足受众的视觉感受,同时将信息内容更加深刻而精简地传达给阅读者,使整个信息传达的过程更加轻松便捷。对于数据可视化有诸多工具,如:ECharts、iCharts、D3js、Flot、Raphaël等功能都十分强大,但对于非专业可视化而又经常与图表打交道的职场人士来说,一款轻便易学而又实用的可视化软件则显得十分重要。比如cognos、tebleue等。如果需要展现的数据结构不是特别复杂,而又要把数据展现的绚丽多彩,而且具有交互性,那么水晶易表是不二之选。
1.谁是你的阅读者?
无论你是否在做一份传统的报表还是新式的信息图,首先问问自己有哪些阅读者看到这份报告?他们对将要讨论的事项了解多少?他们需要什么?、还有,他们会如何利用你要展示的信息和数据呢?而我之前讲过,明确清晰的分析目标和方法会有多重要,因为只有明确分析目标,才能有一个良好的驱动过程。无论是目标驱动还是分析过程驱动,后续的数据分析工作和分析报告里所要呈现的全部内容事项都是紧紧围绕着这个目标主题而服务的。
2.规划数据可视化方案
数据可视化方案,是一定是能够解决用户特定问题的。既然是能够解决用户特定的问题,那么这样的高度,是在基于你在深入地理解了这些数据的现象和本质的基础之上。简单来说,就是你的可视化方案,不仅懂得并且能够很好地解释数据分析的结论、信息和知识。并且管理者能够沿着你规划的可视化路径能够迅速地找到和发现决策之道。
举例来说,当企业的业绩不达标时(企业的业绩是否达标,关系到企业最关键的利益和存亡。)可视化方案的设计路径应该是这样的:
Step1,从整体运营出发,明确有哪些关键因素会影响成交和业绩。
比如:有效名单、demo品质、客服服务、产品属性等,相应地去看这些关键因素对应的KPI的表现,对整体的业绩来讲,这些因素都会是驱动因素,这些因素对应的KPI都会是对STV有直接驱动和影响作用的。这些驱动数据的可视化是基础,也是寻找解决方案最终的出发点和落脚点。因为,这些数据的表现,是关乎运营成功与否的最直接视图。
Step2,对关键因素深入分析确定是什么因素导致了业绩没达成,发现和挖掘导致业绩未达标的根本原因和问题。
比如:
对比分析,逐一观测201601月-201612月全部关键因素对应的KPI的表现,对比成交业绩最高的月份和成交业绩最差月份的关键因素对应的KPI差异在哪里,能够快速定位出哪些方面、哪些因素导致业绩未达标。然后能够有针对性地驱动和帮助业务部门去改善。追踪对成交和业绩有驱动和改善的行动方案的落地和实施进度,存在什么样的问题,是否存在行动方案的执行不力影响了业绩达标。Step3,针对这些问题因素,有的放矢地去做改善和探索提升业绩之道。
否则,设计再商业绚丽的可视化图表,如果不能快速地得到信息和商业决策建议和方案就毫无意义。可视化仅仅成了虚假和欺骗,华丽而不务实的结果。基于准备好的全部的这些问题所得出的答案,就要开始定制你的数据可视化方案以满足每个决策者的特定要求。数据可视化始终都应该是为其受众专门定制的,这样的报告里只应包括受众需要知道的信息,且应将这些信息置于和他们有关并对他们有意义的背景下。
3.给数据可视化一个清晰的标题。
当你的报告像一份报纸、杂志的新闻一样。从这个标题,就能给阅读者强烈的冲击。一个清晰的标题是能够很好地阐释报告和故事的主题,是对整个报告和故事概括的信息。当然,并不是鼓励运营分析人员去做“标题党”。好的标题,既不要模棱两可,也不要画蛇添足,只要解释清楚图表即可。这有助于帮受众直接进入主题。这样能让读者大致浏览文件,并能快速抓住核心所在。尽量让你的标题突出。
4.将数据可视化和你的策略、方案联系起来
如果数据可视化的目的在于介绍能解决具体的、可衡量的、可执行的、有相关性和时效性问题的数据,那就在开场白里加上这些问题。稍后再和你的策略连接起来以理清这些数据的定位,因此,读者便能立刻明白可视化数据的相关性和价值。最终,他们便能更好地参与进来,并能够更明智地利用这些信息。数据可视化,最终时为了企业良好的运营而服务的,这是它的商业价值。如果你不关注企业的战略和行动方案,很难建立起具有联动价值的信息图。比如,企业执行的行动方案,通常是为了达成和实现企业的战略目标,通过这样的手段实现精益管理和精益运营。所以,可视化的解决方案要能够做到,行动方案对战略目标的驱动效果、个体、团队对部门整体指标、KPI的驱动和影响效果。只有建立起来具有联系的信息视图,才会获得有价值的数据可视化。
5.明智地选择你的展示图表。
不管使用哪一类图表,bar图、折线图、雷达图等等,每一种图表都有它自身的优点和局限性。你无法找到完美的可视化图表。但你可以通过尝试混合展现方式让可视化表现再人性化一点点。所以的可视化效果,都应该尽可能简单精准地传达讯息。这就意味着:不论有多新潮、多好看或者多绚丽,这都不是设计数据可视化的初衷。诚然,我们在持续地并且永不满足地追求数据之美。但最佳的平衡点在于,用合适的数据可视化开阐释恰到好处的信息和知识的价值之美。
只用有关联能传达重要信息的且为你的受众所需要的图形。无需填满页面的所有空白——太多杂乱的内容只会干扰对重要信息的接收,会让人太难记住,又太容易忽略。恰当运用色彩,增加信息深度。同时要注意有些色彩具备潜在含义。举例来说,红色被认为是代表警告或危险的颜色。适合预警额。不要使用太多不同类的图表、表格和图形。如果需要对比各种图表,要确保你阐述数据时使用的是同类的图表,这样才能便于互相比较。6.在恰当处备注文字说明
文字说明有助于用语言解释数据,并能在情境化图表的同时增加内容的深度。数字和表格或许仅能提供快照,而文字说明则让人对关键处了解更多,加以评论并强调其内涵。引导观看者去思考图形的主题,而不是方法论、图形设计、图形生成或其他东西。
避免歪曲数据原本的意图。让庞大的数据集连贯一致。吸引读者将不同的数据片段进行比对和比较,突出重点和优劣。主旨要相当明确:描述、挖掘、作表、可视化自我解读。◅Ⓕ如何实现可靠的数据可视化?
可以借助无代码的数据可视化工具。
操作简单,功能强大,5分钟即可完成数据大屏的搭建。
以下是我使用雀书无代码平台搭建的数据看板:
客户分析
商机分析
再说说我推荐雀书作为实现数据可视化工具的六点理由:
1. 丰富的图表样式
数据可视化的展示方法非常多样,重要的是根据数据类型选择合适的展现形式。雀书拥有丰富的图表样式,例如常见的柱状图、条状图、面积图、饼状图、仪表盘折线图、双轴图、排名表等等。企业根据业务场景的实际需求,选择不同图表展示数据,可以快速洞察业务情况。
比如漏斗图-展示不同阶段客户数量,清晰观察到客户流失情况
比如饼状图-得到企业目前不同状态员工的占比情况,了解人员架构
比如仪表盘-清晰观察到部门或员工业绩目标的完成情况
2. 丰富的页面组件
在图表外,平台提供的按钮、应用、日程、公告、帖子等丰富组件,支持通过多种形式查看、协作、满足企业内外部类型多样的数据可视化和数据应用场景需求。
比如应用-可以直接跳转到有处理需求的应用页,提高工作效率
比如公告-展示站内通知的讯息,包括数据的告警
3. 无需公式,实时更新
图表无需编程公式,直接按照想呈现内容进行配置数据,表对表关联、分组、函数公式的计数、最大最小值、求和、平均值等,完成后即可实现数据看板随数据同步更新。
4. 联动钻取,灵活交互
大屏可视化可对数据进行钻取、图表联动等,结合丰富的交互功能,让数据开口说话传达信息。
5. 数据融合
当然,不只雀书系统内原有的数据,雀书可以通过WEBHOOK等方式灵活接入外部数据源,一步打破数据孤岛,链接需要的所有数据,进行统一分析。
6. 多端展示
雀书的可视化数据支持多端展示,不仅能够在PC端配置使用,还支持移动端展示,随时随地掌握业务情况。
总的来说,雀书无代码开发平台的数据可视化操作简单,功能丰富,非常值得企业使用。
♋↣如何实现可靠的数据可视化?
实现数据可视化的方法很多,就看楼主擅长哪一种。
第一:把数据导入Excel表格,然后通过在Excel里把数据转换成条形图,饼图,柱状图,线图等来实现数据可视化。
第二:近两年比较火的Python大数据分析,利用Python中专门用于数据可视化的模块来实现数据可视化。
第三:前端有很多JavaScript数据可视化框架,可以直接很直观的在网页生成可视化动态数据。
等等,方法很多,楼主的问题太大,没有具体到某个某一个工具,所以无法展开详细来说,但是,楼主既然提到了数据可视化,相信一定是想知道如何基于编程来实现数据可视化的,那么推荐你了解一下Python数据可视化方向的教程。
------------------
推荐阅读:
上一篇:宝钗能对付得了夏金桂吗?
下一篇: 经常眼睛干涩怎么办?