人工智能领域需要具备哪些知识呢?
┳=人工智能领域需要具备哪些知识呢?
人工智能入门需要掌握的知识:
1.基础数学知识:线性代数、概率论、统计学、图论
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
3.编程语言基础:C/C++、Python、Java
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等
☼⇌人工智能领域需要具备哪些知识呢?
人工智能需要掌握的相关知识:
数学方向:线性代数(主要是矩阵运算)、概率论、数理统计、高等数学、图论、凸优化等。
计算机基础知识:linux、网络工程、数据结构、关系型数据库、NoSQL、网络爬虫等
编程语言:C++、Python、Java
人工智能基础知识:聚类、关联规则、贝叶斯分类、SVM、决策树、决策森林、人工神经网络、KNN、线性回归、逻辑回归、核函数、时间序列分析、协同过滤、遗传算法、粒子群优化算法、多维分析等
相关工具:Python及相关库函数numpy、pandas、Scipy、Scikit-Learn、Tensorflow、XGBoost等
OpenCV、Caffe、matlab、CNTK、DMTK等至少10几个相关工具和平台
一般来说,本科学历难以搞定,至少研究生学历才能基本弄清楚
♨♜人工智能领域需要具备哪些知识呢?
人工智能技术体系涉及到的知识还是比较多的,基础知识包括数学、计算机、控制学、哲学、神经学和语言学等内容,所以人工智能也是典型的交叉学科,不仅学习难度比较大,涉及到的知识量也非常大,因此长期以来人工智能领域的人才培养都是以研究生教育为主。
对于当前的职场人来说,如果想在不读研的情况下,进入人工智能领域发展,通常可以从以下几个方面入手:
第一:学习人工智能平台知识。对于基础比较薄弱的初学者来说,目前进入人工智能领域最快速的方法之一就是学习人工智能平台知识,随着各大科技公司纷纷开放自己的人工智能平台,使得人工智能技术的开发门槛得到了很大程度的降低。通过人工智能平台,即使不掌握人工智能技术的细节,也能够开发出各种人工智能应用,随着产业互联网的发展,未来人工智能平台在促进人工智能技术落地应用方面,会起到越来越大的作用。
第二:学习机器学习知识。如果要深入学习人工智能知识,可以考虑从机器学习开始入手,一方面机器学习领域的知识体系相对完善,而且机器学习在大数据领域也有广泛的应用(两种主要数据分析手段之一),另一方面计算机视觉、自然语言处理等方向也需要机器学习的支撑。
第三:应用场景知识。应用场景知识对于从事人工智能领域的研发也有非常直接的影响,实际上场景对于人工智能产品是否能够实现落地应用起到决定性的作用,所以掌握应用场景知识(构建)对于进入人工智能领域发展也是比较重要的。目前物联网被认为是人工智能产品实现落地应用的重要场景,所以应该掌握一定的物联网知识。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
£✦人工智能领域需要具备哪些知识呢?
这个咱是外行。[害羞]
✰◇人工智能领域需要具备哪些知识呢?
人工智能的发展近年是大热潮,对于人类市场而言,人工智能的发展已经逐渐参透到人类生活及生产的方方面面。
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用--机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统等。人工智能(Artificial Intelligence)是研究解释和模拟人类智能、智能行为及其规律的一门学科。其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算系统。AI作为计算机科学的一个重要分支和计算机应用的一个广阔的新领域,它同原子能技术,空间技术一起被称为20世纪三大尖端科技。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;
总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
人工智能的发展历程
时至今日,人工智能发展日新月异,此刻AI已经走出实验室,离开棋盘,已通过智能客服、智能医生、智能家电等服务场景在诸多行业进行深入而广泛的应用。可以说,AI正在全面进入我们的日常生活,属于未来的力量正席卷而来。让我们来回顾下人工智能走过的曲折发展的60年历程中的一些关键事件:
1946年,全球第一台通用计算机ENIAC诞生。它最初是为美军作战研制,每秒能完成5000次加法,400次乘法等运算。ENIAC为人工智能的研究提供了物质基础。
1950年,艾伦·图灵提出“图灵测试”。如果电脑能在5分钟内回答由人类测试者提出的一些列问题,且其超过30%的回答让测试者误认为是人类所答,则通过测试。这边论文语言了创造出具有真正智能的机器的可能性。
1956年,“人工智能”概念首次提出。在美国达特茅斯大学举行的一场为其两个月的讨论会上,“人工智能”概念首次被提出。
1959年,首台工业机器人诞生。美国发明家乔治·德沃尔与约瑟夫·英格伯格发明了首台工业机器人,该机器人借助计算机读取示教存储程序和信息,发出指令控制一台多自由度的机械。它对外界环境没有感知。
1964年,首台聊天机器人诞生。美国麻省理工学院AI实验室的约瑟夫·魏岑鲍姆教授开发了ELIZA聊天机器人,实现了计算机与人通过文本来交流。这是人工智能研究的一个重要方面。不过,它只是用符合语法的方式将问题复述一遍。
1965年,专家系统首次亮相。美国科学家爱德华·费根鲍姆等研制出化学分析专家系统程序DENDRAL。它能够分析实验数据来判断未知化合物的分子结构。
1968年,首台人工智能机器人诞生。美国斯坦福研究所(SRI)研发的机器人Shakey,能够自主感知、分析环境、规划行为并执行任务,可以柑橘人的指令发现并抓取积木。这种机器人拥有类似人的感觉,如触觉、听觉等。
1970年,能够分析语义、理解语言的系统诞生。美国斯坦福大学计算机教授T·维诺格拉德开发的人机对话系统SHRDLU,能分析指令,比如理解语义、解释不明确的句子、并通过虚拟方块操作来完成任务。由于它能够正确理解语言,被视为人工智能研究的一次巨大成功。
1976年,专家系统广泛使用。美国斯坦福大学肖特里夫等人发布的医疗咨询系统MYCIN,可用于对传染性血液病患诊断。这一时期还陆续研制出了用于生产制造、财务会计、金融等个领域的专家系统。
1980年,专家系统商业化。美国卡耐基·梅隆大学为DEC公司制造出XCON专家系统,帮助DEC公司每年节约4000万美元左右的费用,特别是在决策方面能提供有价值的内容。
1981年,第五代计算机项目研发。日本率先拨款支持,目标是制造出能够与人对话、翻译语言、解释图像,并能像人一样推理的机器。随后,英美等国也开始为AI和信息技术领域的研究提供大量资金。
1984年,大百科全书(Cyc)项目。Cyc项目试图将人类拥有的所有一般性知识都输入计算机,建立一个巨型数据库,并在此基础上实现知识推理,它的目标是让人工智能的应用能够以类似人类推理的方式工作,成为人工智能领域的一个全新研发方向。
1997年,“深蓝”战胜国际象棋世界冠军。IBM公司的国际象棋电脑深蓝DeepBlue战胜了国际象棋世界冠军卡斯帕罗夫。它的运算速度为每秒2亿步棋,并存有70万份大师对战的棋局数据,可搜寻并估计随后的12步棋。
2011年,Watson参加智力问答节目。 IBM开发的人工智能程序“沃森”(Watson)参加了一档智力问答节目并战胜了两位人类冠军。沃森存储了2亿页数据,能够将于问题相关的关键词从看似相关的答案中抽取出来。这一人工智能程序已被IBM广泛应用于医疗诊断领域。
2016~2017年,AlphaGo战胜围棋冠军。AlphaGo是由Google DeepMind开发的人工智能围棋程序,具有自我学习能力。它能够搜集大量围棋对弈数据和名人棋谱,学习并模仿人类下棋。DeepMind已进军医疗保健等领域。
2017年,深度学习大热。AlphaGoZero(第四代AlphaGo)在无任何数据输入的情况下,开始自学围棋3天后便以100:0横扫了第二版本的“旧狗”,学习40天后又战胜了在人类高手看来不可企及的第三个版本“大师”。
------------------
推荐阅读:
诈骗两百万,主犯,分赃120万。问:退赔和不退赔在量刑上有什么区别?