人工智能技术有哪些?
▍人工智能技术有哪些?
1、计算机视觉2.大数据3.知识图谱4.机器学习5.深度学习6.神经网络7.自然语言处理等等
想学习更多人工智能知识你可以看一下这个网站:www.chinaai.org.cn
▍人工智能技术有哪些?
机器学习是我的主要研究方向之一,同时也在带相关方向的研究生,所以我来回答一下这个问题。
人工智能技术经过六十多年的发展,目前主要的研究内容集中在六大领域,分别是机器学习、计算机视觉、自然语言处理、知识表示、自动推理和机器人学。随着大数据的发展,目前机器学习、计算机视觉和自然语言处理相关技术得到了广泛的关注,一些基于机器学习技术的智能体(人工智能产品)已经陆续被部署到生产环境中。
虽然目前市场对于人工智能的呼声比较高,诸多大型互联网企业陆续开始布局人工智能领域,但是目前人工智能领域依然处在行业发展的初期,目前的人工智能产品依然处在“弱人工智能阶段”,智能体对于运行场景依然有较多的要求。
人工智能技术的发展和应用需要一系列技术的支撑,这些技术包括物联网技术、云计算技术、边缘计算技术、大数据技术等。
以机器学习为例,机器学习的步骤包括数据收集、数据整理、算法设计、算法实现、算法训练、算法验证和算法应用,其中算法设计是机器学习的核心,而数据收集是机器学习的基础。所以,在大数据的支撑下,机器学习在大数据时代得到了一定程度的发展。简单的说,数据量越大机器学习的效果就会越好。
目前我国正在持续推进产业结构升级,而网络化、智能化是产业结构升级的重要内容,所以人工智能技术未来的发展空间还是非常值得期待的。产业结构升级的背后必然是人才结构的升级,所以对于职场人来说,掌握一定的人工智能技术会在一定程度上提升自身的职场竞争力。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网方面的问题,或者考研方面的问题,都可以咨询我,谢谢!
▍人工智能技术有哪些?
1、大数据
大数据,或者称之为巨量资料,指的是需要全新的处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。也就是说,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。大数据是AI智能化程度升级和进化的基础,拥有大数据,AI才能够不断的进行模拟演练,不断向着真正的人工智能靠拢。
2、计算机视觉
计算机视觉顾名思义,就是让计算机具备像人眼一样观察和识别的能力,更进一步的说,就是指用摄像机和电脑代替人眼对目标进行识别、跟踪和测量,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。
3、语音识别
语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高新技术。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别是人机交互的基础,主要解决让机器听清楚人说什么的难题。人工智能目前落地最成功的就是语音识别技术。
语音识别目前主要应用在车联网、智能翻译、智能家居、自动驾驶方面,国内最具代表性的企业是科大讯飞,此外还有云知声、普强信息、声智科技、GMEMS通用微科技等初创企业。
4、自然语言处理
自然语言处理大体包括了自然语言理解和自然语言生成两个部分,实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然语言文本来表达给定的意图、思想等,前者称为自然语言理解,后者称为自然语言生成。自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。自然语言处理的终极目标是用自然语言与计算机进行通信,使人们可以用自己最习惯的语言来使用计算机,而无需再花大量的时间和精力去学习不很自然和习惯的各种计算机语言。
针对一定应用,具有相当自然语言处理能力的实用系统已经出现,典型的例子有:多语种数据库和专家系统的自然语言接口、各种机器翻译系统、全文信息检索系统、自动文摘系统等。国内BAT、京东、科大讯飞都有涉及自然语言处理的业务,另外还出现了爱特曼、出门问问、思必驰、蓦然认知、三角兽科技、森亿智能、乂学教育、智齿客服等新兴企业。
5、机器学习
机器学习就是让机器具备人一样学习的能力,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心。
▍人工智能技术有哪些?
1.什么是人工智能
人工智能(Artificial Intelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。
2.人工智能的层次结构
基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。
算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。
计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索、医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。
语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“Radio Rex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如Apple Siri,Echo等。
自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。
规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。
3. 人工智能应用场景
3.1. 语音处理
• 语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。
– 前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。
– 语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。
– 语义识别和对话管理:更多属于自然语言处理的范畴。
– 语音合成:文本分析、语言学分析、音长估算、发音参数估计等。
• 应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。
• 未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。
3.2. 计算机视觉
• 计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。
– 图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。
– 图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。
– 图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。
• 应用:
– 医疗成像分析被用来提高疾病的预测、诊断和治疗。
– 在安防及监控领域被用来指认嫌疑人。
– 在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。
• 未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。
3.3. 自然语言处理
• 自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。
– 知识图谱:基于语义层面对知识进行组织后得到的结构化结果。
– 对话管理:包含闲聊、问答、任务驱动型对话。
– 机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。
• 应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。
4. AI、机器学习、深度学习的关系
4.1. 人工智能四要素
1) 数据
如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。
2) 算法
主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。
3) 算力
人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。
另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。
4) 场景
人工智能经典的应用场景包括:
用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别4.2. 三者关系简述
人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。
机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。
深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
▍人工智能技术有哪些?
静心科技,打造静心科研。
人工智能技术应用分割:深度学习——计算机视觉——智能机器人——虚拟个人助理——自然语言处理 - 语音识别——自然语言处理 - 通用——实时语音翻译——态势感知计算——手势控制——自动识别视觉内容——推荐引擎等
下面,我们将从概述和技术原则的角度对每个细分进行扩展,以便每个人都能扩展他们的知识。1——深度学习深度学习是人工智能领域的一个重要应用领域。谈到深度学习,每个人都想到的第一件事就是AlphaGo。通过一次又一次地学习——更新算法,Go的主人在人机对战中被击败。对于智能系统,深度学习的能力决定了它能够满足用户期望的程度。 。深度学习的技术原理:1.构建网络并随机初始化所有连接的权重; 2.向该网络输出大量数据; 3.网络处理这些行为并学习; 4.如果此动作符合指定的动作,它会增加重量如果没有,它会减轻重量; 5.系统通过上述过程调整重量; 6.经过数千次学习,超过人类表现;2——计算机视觉计算机视觉是计算机从图像中识别对象——场景和活动的能力。计算机视觉具有广泛的细分应用,包括医学成像分析——人脸识别——公共安全——安全监控等。3——语音识别语音识别是将语音转换为单词和识别——的认知和处理。语音识别的主要应用包括电话——医疗字段听写——语音写入——计算机系统语音控制——电话客服。4——虚拟个人助理苹果手机上的Siri和小米手机上的小爱都是虚拟个人助理应用程序。5——自然语言处理自然语言处理(NLP)与计算机视觉技术一样,结合了各种技术,有助于实现目标,实现人与计算机之间的自然语言交流。6——智能机器人生活中随处可见智能机器人,随机器人扫地机器人—— ......这些机器人与人工智能技术的支持是分不开的,无论是与人交谈还是与自己的导航聊天。——安全监控。建议使用7——引擎淘宝——京东等商场,以及36氪等信息网站,将根据您搜索的关键字——页面——向您推送一些相关产品——或网站内容。这实际上是发动机推荐技术的一种表现形式。------------------
推荐阅读:
上一篇:公务员如何和领导谈涨工资?
下一篇: 俄罗斯为什么不使用武力重新恢复苏联?